
Introduction to Scripting:
Writing Python Scripts

ENV 859

Geospatial Data Analytics

Learning Objectives

• The process of writing a Python script
– Objectives and approaches

– Best practices

• More practice on…
– Variables & data types

– File objects

– Iteration (for… & while… loops)

– Conditional processing (if…else…)

– Handling script errors

– User input
2

The Zen of Python, by Tim Peters

3

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules,

Although practicality beats purity.

Errors should never pass silently,

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one—and preferably only one—obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea—let’s do more of those!

h
tt

p
:/

/p
ro

ce
ed

in
gs

.e
sr

i.c
o

m
/l

ib
ra

ry
/u

se
rc

o
n

f/
p

ro
c0

4
/d

o
cs

/p
ap

1
0

2
7

.p
d

f

http://proceedings.esri.com/library/userconf/proc04/docs/pap1027.pdf

The Task

Your research team just caught wind that you know
Python!

They have some ARGOS tracking data - a text file in a
marginally human readable format and with a lot of
“noise”.

They want you to build a tool whereby a user can
enter a date and retrieve the location(s) at which the
turtle was observed.

4

The Task

5

Exercise: Process ARGOS Data

ARGOS data: "Sara"

➢ Allow user to pick a
date and display
information on any
observations recorded
that day

6

http://www.seaturtle.org/tracking/index.shtml?tag_id=29051a&zoom=1

How ARGOS works…

7

https://conserveturtles.org/sea-turtle-tracking-works

https://conserveturtles.org/sea-turtle-tracking-works

Exercise: Process ARGOS Data

8

ARGOS data: "Sara"

Step 1: Pseudocode

ARGOS data: "Sara"

1. Open ARGOS data file

2. Read and parse each line
a. Skip comment lines

b. Skip records below a quality threshold (qc <> 1, 2, or 3)

c. Add obs. date to a date dictionary, keyed by UID

d. Add obs. lat/long to a location dictionary, keyed by UID

3. Allow user to specify date
a. Inform if date is invalid

4. Identify keys in date dictionary matching user supplied date

5. Identify values in location dictionary with keys found above

6. Print information to screen

9

Plan of attack: start simple

10

What’s next?

Coding platform: VS Code

Versioning software: Git/GitHub

Practice writing code!

11

12

Intro to Git/GitHub

13

Parsing strings into variables
• Task1.py -Parse a line of tracking data

14

http://docs.python.org/release/2.6.5/tutorial/inputoutput.html#reading-and-writing-files

Python file objects
(for Task2 which reads data from an ARGOS data file)

15

http://docs.python.org/release/2.6.5/tutorial/inputoutput.html

Python file objects
Python "file object"

• open a file as read-only object >>> f = open(fn, 'r')

• open a file for writing (erases if exists) >>> f = open(fn, 'w')

• open a file for appending lines to it >>> f = open(fn, 'a')

• read the first line from a file object >>> print f.readline()
moves the file pointer to the next line

• read all lines from the text file into >>> data = f.readlines()
a list object

• write to the file >>> f.write("Hi!\n")

• close the file >>> f.close()
16

file object file name

Task 2: Read a line from ARGOS file
• Task2.py – Reads in first line of data from a text file

(rather than having to paste it in the script itself)

17

While loops

Indentation is a key feature of Python

18

Task 3: Read all data from ARGOS file

• Task3.py – Use a while loop to read all lines from the ARGOS file

19

Read first line:
lineString has a value

While loop continues as
long as lineString has a
value

Indented lines are run only
as part of while loop.

Update the lineString value
to the next line

Close the file object

For loops

20

Task 4: Read all data from ARGOS file

• Task4.py – Use a for loop to process all lines from the ARGOS file

21

Reads in all lines, creating a
list object (lineStrings)

Prints the number of
records in the list

Closes the file object

Iterates through each item
in the lineStrings list.

Task 5a: Create a dictionary of observations

22

Create two dictionaries:
One for date and one for
location; these will be
empty at first…

Add values to each
dictionary within the for
loop; set the record
value as the key and the
date/location data as
the values.

• Task5a.py – Inserts select ARGOS attributes into dictionaries

If…else…statements

• Use = to set a variable value;

• Use == to evaluate equivalency
23

Task 5b: Filter which records are used

24

• Task5b.py – Inserts selected ARGOS records into dictionaries

Create a variable to
count records that
get omitted

Add value to the
dictionaries only if
the location class
value is 1, 2, or 3

If the record is not

added, add to the
tally of omitted
records

Model inputs: User Input

25

Task6a.py
• Use the raw_input() function to get user date

Task 6a: Allow user to select site

26

• Create an empty list called keyList…

• Loop through keys in dateDict
– for each key, get the value; for each value, get the date

– if the date matches the user date, add the key to a keyList

Task6a.py

Task 6a: Allow user to select site

27

• Loop through the keys in the keyList (i.e. where the date matches)

• Get the corresponding location value from the locationDict

• Print the latitude and longitude values nicely to the screen

Task 6a: Allow user to select site

28

Task6a.py

Model inputs: User Input

29

Task6b.py – Catch the error before it's a problem

Task 6b: Error Trapping (specific)

30

Check to see that the
user date returns at
least one record.

If not, indicate no
records found…

Otherwise, proceed
with the successful
message

Anticipated errors can be dealt with somewhat explicitly

Error Trapping in Python
http://docs.python.org/release/2.6.5/tutorial/errors.html#handling-exceptions

31

http://docs.python.org/release/2.6.5/tutorial/errors.html

Task6c.py – Catch any error before it's a problem

Task 6c: Error Trapping (general)

32

Indent error prone text under a try:
clause. If any error occurs within
the section under the try: clause,
Python will skip to the except:
clause.

Raise an error if the date supplied is
not in the right format. Error
trapping is triggered.

Raise an error if no records are
returned

If no errors occur, the except: clause
is skipped.

Unanticipated errors are handled generally

Writing scripts

• Approach a scripting project by mapping out
the logical flow what you want to accomplish

• Construct your script in incremental steps

• Include comments throughout your script

• Give useful names to your variables

Writing scripts gets easier with experience and
more knowledge of the scripting language

33

34

	Slide 1: Introduction to Scripting: Writing Python Scripts
	Slide 2: Learning Objectives
	Slide 3: The Zen of Python, by Tim Peters
	Slide 4: The Task
	Slide 5: The Task
	Slide 6: Exercise: Process ARGOS Data
	Slide 7: How ARGOS works…
	Slide 8: Exercise: Process ARGOS Data
	Slide 9: Step 1: Pseudocode
	Slide 10: Plan of attack: start simple
	Slide 11: What’s next?
	Slide 12
	Slide 13: Intro to Git/GitHub
	Slide 14: Parsing strings into variables
	Slide 15: Python file objects
	Slide 16: Python file objects
	Slide 17: Task 2: Read a line from ARGOS file
	Slide 18: While loops
	Slide 19: Task 3: Read all data from ARGOS file
	Slide 20: For loops
	Slide 21: Task 4: Read all data from ARGOS file
	Slide 22: Task 5a: Create a dictionary of observations
	Slide 23: If…else…statements
	Slide 24: Task 5b: Filter which records are used
	Slide 25: Model inputs: User Input
	Slide 26: Task 6a: Allow user to select site
	Slide 27: Task 6a: Allow user to select site
	Slide 28: Task 6a: Allow user to select site
	Slide 29: Model inputs: User Input
	Slide 30: Task 6b: Error Trapping (specific)
	Slide 31: Error Trapping in Python
	Slide 32: Task 6c: Error Trapping (general)
	Slide 33: Writing scripts
	Slide 34

