NICHOLAS SCHOOL OF THE
ENVIRONMENT AND EARTH SCIENMCES

DUKE UNIVERSITY

Introduction to Scripting:
Writing Python Scripts

ENV 859
Geospatial Data Analytics

Learning Objectives

* The process of writing a Python script
— Objectives and approaches
— Best practices

* More practice on...
— Variables & data types
— File objects
— lteration (for... & while... loops)
— Conditional processing (if...else...)
— Handling script errors
— User input

http://proceedings.esri.com/library/userconf/proc04/docs/papl1027.pdf

- The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules,

Although practicality beats purity.

Errors should never pass silently,

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea—let’s do more of those!

http://proceedings.esri.com/library/userconf/proc04/docs/pap1027.pdf

The Task

Your research team just caught wind that you know
Python! e AT

They have some ARGOS tracking data - a text file in a
marginally human readable format and with a lot of
“noise”.

They want you to build a tool whereby a user can

enter a date and retrieve the location(s) at which the
turtle was observed.

4

The Task

= Saratd

4 g lc location class, see http://www.nacls.com/html/argos/manual /html/chapi/chapZ 3 _htm#Z.3.5

5 £ ig quality index, see http://www.nacls. com/html/argos/manual /html/chapd/chapd 4 3 htm§4.4.3.3

o # latl solutionl latitude

7 £ lonl soluticonl longitude

B # lat?Z solutionZ latitude

5 £ lonZ solutionZ longitude
10 f nb mes number of messages received
11 £ big_nb mes number of messages recelived by satellite with signal strength greater than -120 decibkels
12 £ besat_lewvel strongest signal strength receiwved
13 £ pass_duration time elapsed between first and last messages being received by satellite
14 # nopc number of successful plausikility checks (0 to 4)
15 £ calcul freg calculated transmit freguency
18 £ altitude altitude used in location calculation
17 uid tag_id utec lo ig latl lonl latZ lonZ nk mes big nb mes best_level pass _duration nopc calcul freq altitu
18 Z208le 23051 T/3/2003 9:13 3 &8 33.898 -77.958 Z7.386% -4€.30%9 & u] -1Z& 5Z% 3 401 &51134.7 a
15 21832 23051 TS3/2003 9:Z23 B u] 33.887 -77.85 43.3B83 -1Z8.418 Z u] -13Z2 38 1 401 &51133.1 a
20 Z208l8 23051 T/3/2003 10:31 2 [33.88B4 -77.%948 ZZ.B75 -Z5.Z7& 3 u] -13Z2 3Z0 3 401 &511&83.3 a
21 20813 23051 TS,3/2003 10:45 & 7 33.927 -7B.008 37.Z%1 -94.435 3 u] -125 280 2 401 &511&6&.8 a
22 Z208Z0 23051 T/3/2003 1Z2:10 2 &7 33.801 -77.90% 31.005 -&64.814 4 u] -1z24 gl 3 401 &51181.¢& a
23 Z08Z1 23051 T/3/2003 12:11 B u] 33.575 -T77.€91 32.741 -73.Z78 Z u] -1Z& 408 2 401 &51134.7 a
Z4 20824 23051 T/3/2003 14:45 B u] 33.84 -77.807 Ze.448 -41.388 2 u] -1z4 151 2 401 &51134.7 a
25 20827 23051 T/,352003 16:28 B a 33.79%4 -77.513 36.337 -8%.9 Z a =130 281 2 401 &51134.7 a
28 20823 23051 T/3/2003 17:02 A =] 33.85 -77.804 3&8.8 -891.&97 3 u] -1z1 1l8e 3 401 &5117&.7 a
27 20830 283051 T/35,2003 17:25% B u] 33.59e5 -77.%984 42.107 -3B.Z5% Z u] =127 237 2 401 &51134.7 a
28 20831 23051 T7/3/2003 13:07 0 58 33.98% -77.€98 3Z.Z23% -Be.4Z1 4 u] -125 514 3 401 &51173.0 a
25 21853 23051 T7/3/2003 Z22:11 B u] 34.0z28 -77.74 30.15 -8&.51¢ 2 u] -1z24 131 2 401 &51173.0 a
30 20833 23051 T/4/2003 Z:-32 B u] 34.117 -77.735 3€.%35 -€3.53% 2 u] -127 143 2 401 &51173.0 a
31 20840 23051 TS4/2003 3:-42 B u] 34.138 -77.72Z5 31.Z5 -891.788 2 u] -1Z& 53 2 401 &51173.0 a

Exercise: Process ARGOS Data

ARGOS data: "Sara"

» Allow user to pick a
date and display
information on any
observations recorded
that day

http://www.seaturtle.org/tracking/index.shtml?tag_id=29051a&zoom=1

How ARGOS works...

https://conserveturtles.org/sea-turtle-tracking-works

-W&M‘ "-a"’."‘ received frequency
. - - ~ . - =Ce ¢ enc
W‘*m = \ > : » transmitted frequency

received frequency
< transmitted frequency

Satellite
orbit

L

: Satellite 5

A
yem
g0ing dway

c\o®
“\l\Q >
qe

@ Argos Satellite

' LS relays data to
! e receiving station
! \\
/ N
/ -
,’ @ Data sent to
(D Transmitter researcher
y sends signal

'I at surface __

https://conserveturtles.org/sea-turtle-tracking-works

Exercise: Process ARGOS Data

ARGOS data: "Sara"
dla: odfad
[= Sambd
4 £ 1lc location class, see http://wwW.nacls. com/html/argos/manual /html/chapd/chapé 3 . htmfzZ. 3.5
5 # ig guality index, see http://www.nacls. com/html/argos/manual /html/chap4/chapd 4 3 htm§4.4.3.3
& £ latl sclutionl latitude
T # lonl solutionl longitude
= $# latZ sclutionZ latitude T/3/2003
= # lonZ2 solutionZ longitude
10 £ nb mes nurber of messages received Enter a date [M/D/YYYY] (Press ‘Enter’ to confirm or "Escape’ to cancel)
11 f big_nb mes number of messages received by sate
12 f best_level strongest signal strength received
13 ¥ pass_duration time elapsed between first and last messages being received by satellite
14 # nopc number of successful plausikility checks (0 to 4)
15 f calcul freg calculated transmit freguency
la £ altitude altitude used in locatiocn calculation
17 uid tag id wutc lc ig latl lonl latl lonZ nk mes big nb mes best_level pass_duration nopc calcul freqg altitu
18 lZGElE 23051 TS3/2003 5913] gg |33.8%8 -77.%858|27.38% -45.309 & a -12& 523 3 401 £51134.7 a l
13 21335z 23051 TL3/2003 5923 B a 33.887 -77.35 |43.5383 -lzg.418 2 [u] -132 3¢ 1 401 £51133.1 a
20 Z20elB 23051 TS3/2003)10:31 R g 33.884 -77.534g|22.875 -Z5.27% 3 a -132 320 3 401 £511¢85%.3 u]
21 20813 23051 TS3/2003)10:-45 B 7 33.527 -T75.00B8]|37.231 -54_435 3 Ju] -125 280 2 401 £51166.8 u]
2z lZGEZG 23051 TS3/2003|12:10 2 &7 |33.5301 -77.503]31.005 -£4_.514 4 u] -124 &8lZ 3 401 £51181.& u] l
23 20821 23051 7372003)12:11 B a 332.575 -77.e81)|32.741 -T73.27¢ 2 a -1Z2& 408 2 401 £51134.7 u]
24 20824 23051 TS3/2003)14:45 B a 33.84 -77.807)2¢c.448 -—41_39&8 Z a -134 151 2 401 £51134.7 u]
25 20827 23051 TS3/2003|16:28 B a 32.794 -77.513|3&.337 -B%.5 2 a -130 281 2 401 £51134.7 u]
2o 20823 23051 TS3F2003|17:02 R g 33.85 -77.804)35.8 -31.857 3 a -1z21 lae 3 401 &5117&.7 u]
27 20830 23051 TS3/2003|17:293 B a 33.965 -77.5B4|42.107 -3B.25%% 2 a -127 237 2 401 £51134.7 u]
2B 20831 23051 7S3/2003)15%:07 0O 58 |33.38% -T77.€598|32.23% -B8c.4Z21 4 a -125 514 3 401 £51175.0 u]
23 21833 23051 TS3/2003)22:11 B a 34.028 -77.74 |30.15 -38.51¢ 2 a -124 131 2 401 £51175.0 u]
320 20&33 23051 TS4/2003 232 B a 34.117 -77.735 36.535 -6£3.535 2 a —127 143 2 401 £51175.0 1]
31 20e40 23051 Tlr4F2003 3:42 B a 34.13¢ -77.7E25
On 7/3/2883, Sara was seen at 33.888,-77.958
On 7/3/2883, Sara was seen at 33.981,-77.989%

Step 1: Pseudocode

ARGOS data: "Sara"
1. Open ARGOS data file
2. Read and parse each line

Skip comment lines

Add obs. date to a date dictionary, keyed by UID

a.
b. Skip records below a quality threshold (gc <> 1, 2, or 3)
C.

d. Add obs. lat/long to a location dictionary, keyed by UID

3. Allow user to specify date

a. Inform if date is invalid
4. I|dentify keys in date dictionary matching user supplied date
5. ldentify values in location dictionary with keys found above
6. Print information to screen

Plan of attack: start simple

Sequence Task

1. Parse a single line of tracking data into variables

2. Read a single line of tracking data from the file into Python (and then parse into variables)
3. Read in all lines of tracking data from a file into Python (and then parse into variables)

4. While reading in all lines of tracking data, add variables into dictionaries of values

5. Add conditional statements so only valid values are added to the dictionaries.

6. From our dictionaries, extract data for a selected date.

7. All the user to specify the date used to select data from our dictionary

a. Add code to handle if the user enters an improper date

10

What’s next?

Coding platform: VS Code
Versioning software: Git/GitHub
Practice writing code!

11

Intro to Git/GitHub

© git () GitHub

Parsing strings into variables

* Taskl.py -Parse a line of tracking data

1 |# Taskl.pv

2 #

3 # Description: Parses a line of ARGOS tracking data

4 #

5 # Created by: John Fay (JjpfaviEduke.e=dn)

& £ Created on: Oct 2011

)

i # Copy and paste a line of data &s the startline variahle valus

= lineString = "Z20816 23051 T/3/2003 9:13 3 66 33.898 -T77.858 27.36% -46.309 6 0 -126
10

11 # Use the split command te parse the items in lineString inte a 1ist abject

1z lineData = lineString.splic("\t")

13

14 # Assign variahles teo specfic items in the 1ist

15 recordID = lineDatal[0] # ARGOS tracking record ID

16 obsDateTime = lineDatal[Z] # Ohservation date and time (combined)

17 obzsDate = obsDateTime.split () [J] # Ohservation date - Ffirst item in obsDateTime 1ist ohject
18 obsTime = obsDateTime.split() [1] # Obhservation time - second item 1in obsDateTime 1ist obhject
149 obsLC = lineDatal[3] # Observation Location Class

20 obsLat = lineDatal[5] # Ohservation Latitude

21 obsLon = lineDatal[&] # UObservation Longitnds

22

23 # Print information to the user

24 print "According to record " + recordID,

25 print "Sara was =een at " + str(obsLat) + " 4 LAT: " + =tr{cb=sLat) + " 4 LOH"

14

| |

| Python file objects |
(for Task2 which reads data from an ARGOS data file)

http://docs.python.org/release/2.6.5/tutorial/inputoutput.html#treading-and-writing-files

7.2. Reading and Writing Files

open () returns a file object, and is most commonly used with two arguments: cpen(filename, mode).

>>> £ = open('/tmp/workfile', 'w')
>>> print £
<open file '/tmp/workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is another string
containing a few characters describing the way in which the file will be used. mode can be 'z* when the

file will only be read, '«' for only writing (an existing file with the same name will be erased), and 'a’
opens the file for appending; any data written to the file is automatically added to the end. '=+' opens
the file for both reading and writing. The mode argument is optional; '=* will be assumed if it's omitted.

On Windows, 'v' appended to the mode opens the file in binary mode, so there are also modes like
'rb', 'wb', and 'x+b’'. Python on Windows makes a distinction between text and binary files; the
end-of-line characters in text files are automatically altered slightly when data is read or written. This

behind-the-scenes modification to file data is fine for ASCII text files, but it'll corrupt binary data like that
in gec or =x= files. Be very careful to use binary mode when reading and writing such files. On Unix, it

doesn't hurt to append a 'v* to the mode, so you can use it platform-independently for all binary files.

7.2.1. Methods of File Objects

The rest of the examples in this section will assume that a file obiect called = has alreadv been created. 15

http://docs.python.org/release/2.6.5/tutorial/inputoutput.html

Python file objects

Python "file Object" file on file name

e open a file as read-only object >>>f = open(fn, 'r')

e open a file for writing (erases if exists) >>>f = open(fn, 'w')

e open a file for appending lines to it >>> f = open(fn, 'a')

* read the first line from a file object >>> print f.readline()
moves the file pointer to the next line

* read all lines from the text file into >>> data = f.readlines()
a list object

* write to the file >>> fwrite("Hil\n")

close the file >>> f.close()

16

‘Task 2: Read a line from ARGOS file

* Task2.py — Reads in first line of data from a text file
(rather than having to paste it in the script itself)

_ioix]

1 F T&Ské{.p_}r

2 #

3 # Descripticon: Reads 1n ARGOS data file and parsses 2 linse of ARGOS tracking data
4 2

5 # Created by: John Fay (JpfaviEduke.=dn)

[# Created on: Oct 2011

7

8 # Create a wvariakble pointing to the file with no headsr

x| fileName = "S:%\\Scripting2i‘\SaralloHeader.txt" <:

10

11 # Open the file a5 2 read-only file ckject

12 fileCkhj = open(fileMName, 'r') <:

13

14 # Read the first line from the open file ckbject

15 lineString = fileChj.readline () <:

1&

17 # Close the file cokject

18 fileChj.close () <:

18

20 # Use the split command to parse the items in linseString inte a list object
21 lineData = lineString.split("%t")

22

23 # Assign variables to specfic items in the list

24 recordID = lineData[d] # ARGOS tracking record ID 17
25 obsDateTime = lineDatalZl # Observation date and time (combined)

While loops

=

& whileLoopExample.py

=10l x|

1 #FWhilelLoopExample.py (=
2
3 # This esxample sxscutes the linses indented under
4 # the "while" statement a5 long a5 thse
5 # clause in the while loop 15 trus
B
7 x =1
8
g
10 “while x < 10:
11 print = # Indentation indicates what's run in the loop
12 x=x + 1 # You nesd to be surs that the whils
13 # loop will =ventuslly be reached!
14
15 print "The while loop is done" # Dedented lines run after the loop completes —
1& -
-
J | v 4

Indentation is a key feature of Python

18

| Task 3: Read all data from ARGOS file

* Task3.py — Use a while loop to read all lines from the ARGOS file

Read first line:
lineString has a value

While loop continues as
long as lineString has a |
value |

Indented lines are run only
as part of while loop. —

Update the lineString value \

to the next line

=101]

Close the file object

1

1 # Task3.py
2 #
3 # user
4 #
5 #
6 #
T
8
] fileName
10
11 # Open the file as a read-only file object
1z fileCbj = open(fileName, 'z'})
\ 13
M 4 # Read the first line from the open file object
15 lineString = fileObj.readline ()
16
17 # Use a while loop to read each line, one at a time, until the end of the file is reached
is ~while lineString:
13
20 # Use the split command to parse the items in lineString inteo & list eobject
21 [~ lineData = lineString.splitc("\t")
22
23 # Assign variables to specfic items 1
24 recordID = lineData[0] F record ID
25 obsDateTime = lineDatal[Z] F ate
26 obzsDate = obsDateTime.splitc() [J] F ate
27 obsTime = obsDateTime.splitc() [1] F ims
28 obsLC = lineData[4] F ca
- obsLat = lineData[5] # ti
30 obsLon = lineDatal[6&] # ngi
31
32 ioen te the user
33 o to record " + recordID,
4 print "Sara was seen at " + str(obslLat) + " d LAT; " + str(obsLat) + " d LOHN"
35
36 # R=ad in the next line
3T lineString = fileCbhbj.readline()
38 —
32 # Close the file object
48— fileObj.close () 19

For loops

& ForLoopExample.py =10] x|

1 #fForLoopExamples.pv
2
3 # This example =x=ecutes the lines indented under
4 £ the "while" statement as long as the
5 # clause in the while loop 15 trus
L3}
T #Create 2 tuple of davs
g lj.EI.},E"E = ':rla-_:rl . PR . wTw . R . nThH™ , " . rlaf.,.rl]I
9
10 # Loop through =ach item in the tuples and =xecute
11 # each lin= that 1s indented undsr the for loop
12 - for day in davs:
13 print day
14
15 # Ded=nt lines run &fter the loop completes
16 print "The week is cve:ﬂ
« | *

20

| Task 4: Read all data from ARGOS file

e Task4. PY — Use a for loop to process all lines from the ARGOS file

?‘Taskxl.py —I—I' O il
1 #F Task<.py¥
2 #
3 # Description: Reads in ARGOS data using a FOR LSS#
4 #
& # Created by: John Fay (jpfayfduke.esdu)
[# Created on: Oct 2011
T
8 £ Create a w file with no header
. . . k] fileMame = HAY i ing2\‘\SaralloHeader.txtc"
Reads in all lines, creating a ||| :
. . . . 11 # Open the file as a read-only file object
IISt ObJeCt (llnestrlngS) 12 fileCbj = open(fileMame, '=')
13

\~

£ D - = e - rar=Tal F 0]) —
Read the first line from the open file object

lineStrings = fileCbj.readlines|

¥

H 1 print "There are " 4+ str(len(lineSctrings)} + " records in the file"
Prints the number of | "
ig # Close the file object

records in the list

fileCbj.close|()

e

;‘ 21 # Use & for loop to resd sach lins, ons a2t 3 time, until the list is exhsustsed
. . ”/,/””’T 22 = for lineString in lineStrings:
Closes the file object . | e |

| 24 # Use the split command to parse the items in lineString inte a 1list object

' 25 lineData = lineString.split("\t"
28
27 # Adssign variables to specfic items in the 1ist
28 recordID = lineData[0] i S tracking re

. 24 obsDateTime = lineData[2] date
Iterates th rough each item 30 obsDate = obsDateTime.split () [0] date
3 - obsTime = obsDateTime.split () [1] time
in the lineStrings list. : GbeiC = lineData(:)

3iE obsLat = lineDatal5] Lati
Eizt obsLon = lineDatal&] Longi
35
36 # Print information te the user
37 print * cording to record " 4+ recordID,
38 print "Sara was =seen at " + str(obsLat) + " d4d LAT:; " + str{obsLat) + " d LCH"
3 L 21
40

i

Task 5a: Create a dictionary of observations

* Task5a.py — Inserts select ARGOS attributes into dictionaries

1 L0 AEEy | — DJRFELL L e,)

15

16 # Aead the first line from the opsn file okbject

17 lineS5trings = fileCbj.readlines|()

18 print "There are " 4+ str(len(lineStrings)) + " records in the file"
15

20 # Close the file obhject

Create two dictionaries: 5, %7l

One for date and one for\;’\ ¢ Creste Smpry dictionaziss

dateDict = {}

location; these will be 25 |locationDict = {}
. 26

empty at fIrSt... 27 # Use a for loop to read =ach line, one at a time, until the list is exhausted
28 - for lineS5tring in lineStrings:
29
30 # Use the split command to parss the items in linsfString inte 2 list ockbject
31 lineData = lineString.splitc("\t")
3z
33 # Assign varisbhles teo specfic 1tems in the list

Add Values tO eaCh 34 recordID = lineData[0] # ARGOS tracking record ID
diCtionar Wlthln the fOr 35 obzDateTime = lineDatal[Z] ¥ Observation date 5":& time (combined)
y 36 obsLC = lineDatal[4] # CObservation Location Class
. =17 obsLat = lineData[5] # Observation Latitude
Ioop’ Set the record 38 obsLon = lineDatal[&] # Observation Longiltude
value as the key and the\3§\ —
. 4 # Add wvaluss to dictionary

datE/|OcatI0n data as 41 dateDict [recordID] = obsDateTime.split|()
42 locationDict [recordID] = (obsLat, DbsLDn]|

the values. as
44 # Indicate script 1s complsete
ZhE print "Finished" 22

46

If...else...statements

& IfFlseExample.py

=101 x|

1 #FIfEl s=Example.pv

2

3 # Loops through the davs of the wesk.

4 # If the current day of the wesk 15 weskend, display 8 messages
5 £ If the day i1z Wednesday, print a differsnt message
6 |

T #Create & tuple of davs

a8 days = ("Su", "H", "T","W","Th", "F", "3a"™)

5

10 # Loop through =sach dayv in the tuple of davs
11 —for day in davys:

12 # Evaluate the walus

13 = if day = "2u" or day = "3a":

14 print day + " iz a weekend day"

15 = elif day == "H":

1& print day + " i= "hump day"’®

17 = else:

18 print day + " i= just another day..."
15

20 # Dedsent linss run after the loop completes
21 print "The week i= over"

e Use =to set a variable value;
* Use == to evaluate equivalency

23

Task 5b: Filter which records are used

=

* Task5b.py — Inserts selected ARGOS records into dictionaries

1o
149
20
21

Create a variable to 22
23

count records thatN:\
get omitted py-

27
28

Add value to the 29
. . . . 30
dictionaries only if 31
the location class =2

33
value is1,2,or3

34
33
36

If the record is not
added, add to the
tally of omitted 41

42
records 43

o]
46
47
48
25
20

print str(len(dateDict)) + " records
print str({omittedRecordCount) + " rec

PLCLILL T1lHHEIZS dlE 7 F SLO|ACS1l1NsEaLringsyy + 77 recoruas LIl LIl 2 1LL1E

Clozs= the file ocbject
fileCkbj.close ()

Create empty dicticonaries
dateDict = {}

locationDict = {}
omittedRecordCount = 0

4 T = 7 o = e T - = = T T 7 In 79 T f p—
#F Use a2 for leoop to read =ach lin=e, eone at & time, until the list 15 exhausted

- for lineString in lineStrings:

& T I T T . - In T T 1T RaT T AT T = 7 A—
Use the split command to parse the items in lineString inteo a list object

lineData = line3tring.splitc(".\t™)

£

Azsign wvariskles to specfic i1tems in the list
recordID = lineData[0] ¥ ARGOS tracking record ID
obsDateTime = lineDatal[Z] # Observation date and time ({combined)
obsLC = lineDatal[3] # Observation Location Class
obsLat = lineDatal[5] # Observation Latitude
obsLon = lineDatal&] # Observation Longituode
if obsLC in ("17, "27, "3IM):

Add walues to dictionary

dateDict [recordID] = obsDateTime.=split()

locationDict [recordID] = (obsLat, obsLon)
else:

omittedRecordCount = omittedRecordCount + 1

£ T < = 17 T 0]
Indicate script 15 complete

24

Model inputs: User Input

>>> myName = raw input ("What's your name?")

x
| Q. I
What's your name’? “

Cancel |

>»>» print "Hello " 4+ myName
Hello John

25

Task 6a: Allow user to select site

Task6a.py

 Use the raw_input() function to get user date

&
o4
S
1
=T
o8
23
el
al
L
63
64
65
66
a7

g

userDate

¥ Ask the ussr to enter & rgi\) record and and end record

Create a 115C oL 211 Che distionary kevs (UIDs) with a2 date matching the user date
keyLi=t = [] Create an empty list to which we= can &dd keyvs of matching 1
-for k in dateDict.keys(): Loop through a&11 the keys in the dateDict
v = dateDict[k] G=t the valus corresponding te the key in the currsent loop
dateValue = w[0] The currsent valus 15 3 date, tims tuple. Date 15 the first
7 if dateValue == userDate: Check whether the date matches the ussr date
\‘ keyList.append (k) If it does, then add the key to the key 1ist
Now that w = & 1list of keys, we can loop through them, sextract the lat/long valuss a
print "At " 4+ erDate + ", Sara the turtle was found at:"
-for k in keylL #fLoop through the keys ildentifised abow
userLoc = cationDict[k] #5=2t the lat/leong tuple for the currsen
print " L "tuserLoc[0]+"; Lon: "+userLoc[l] #Print them teo the scresn

« Create an empty list called keyList...

* Loop through keys in dateDict
for each key, get the value; for each value, get the date
— if the date matches the user date, add the key to a keyList

26

Task 6a: Allow user to select site

Task6a.py

53 # Ask the user to enter a start record and and =nd record
54 userDate = raw input ("Enter date of record (M/D/YYYY):")
S
56 # Create & list of all the dictionary keys (UIDs) with & date matching the usser dats
a7 keyList = [] #Create an empty list to which we can add keyvs of matching items
S8 -for k in dateDict.kevs(): #Loop through al11 the keys 1n the dateDict
58 v = dateDict[k] #G=t the wvalus corresponding to the key in the currsnt loop iteration
&0 dateValue = v[J] #The current wvaluese 15 & date, time tuple. Date 1s the first item in that t
&6l = if dateValue == userDate: #FCheck whether the date matches the usser date
62 keyList.append (k) #If it does, then add the key to the key list
63
64 # Now that we have & 1ist of keyvs, we can loop through them, =sxtract the lat/leong valuss and report them
65 print "At " + userDate + ", Sara the turtle was found at:’
L1 -for k in keyLi=t: #Loop [through the keys ldentifi=sd above
a7 userloc = locationDict[k] Fo=t 1= lat/long tuple for the currsnt key
68 print " Lat: "+userLoc[0]+"; Lon: "+userLoc[1l] #Print) them to the scresn
. . .
* Loop through the keys in the keyList (i.e. where the date matches)
 Get the corresponding location value from the locationDict
[]

Print the latitude and longitude values nicely to the screen

27

Task 6a: Allow user to select site

v sty (0

k.
Enter date of record IB.-"?;"EEIEIC{

[T): Cancel |

Lt 8/7/2003, Sara the turtle was found at:
Lat: 368.105; Lon: -T75.601
Lat: 36.087; Lon: -T75.545

Task6a.py

e s (8t

Enter date of record I'I 2344

(MDA):

At 12345, Sara the turtle was found at:

At 3:45 on 36.144, Sara the turtle was observed at Lat: 36.144; Lon: -T75.442
There are 1124 records in the file
140 records added
984 records omitted
Traceback (most recent call last):
File "C:\Python26\ArcGIS10.0\Lib\site-packages\Pythonwin‘\pywin\framework\scriptutils.py",
debugger.run (codeCbject, _ main . diect_, start_stepping=0)
File "C:\Python26&\ArcGI510.0\Lib\site-packages\Pythonwin\pywin\debugger'_ init_ .py", line 60, in run
_GetCurrentDebugger () .run(cmd, globals,locals, start_stepping)
File "C:\Python2&\ArcGIS10.0\Lib\zite-packages\Pythonwin\pywin\debugger\debugger.py"™,
exec cmd in globals, locals
File "3:\Scripting2\Taskéa.py", line 57, in <module>
userloc = locationDict[userRec] 28
vError: "12345°'

line 322, in RunScript

line &55, in run

Model inputs: User Input

>>> myName = raw input ("What's your name?")

x
| Q. I
What's your name’? “

Cancel |

>»>» print "Hello " 4+ myName
Hello John

29

Task 6b: Error Trapping (specific)

Task6b.py — Catch the error before it's a problem

Check to see that the
user date returns at
least one record.

If not, indicate no

records found,.. 64 # Check that at l=ast one record was returned
-if len(keyList) == 0:
a6 print "No observations made on " + userDate

&7 -el=se:
a8 # Now that we have & 1list of kevs, ve can loop through them, sextract the 1
OtherW|Se’ proceed 69 print "4t " + userDate + ", Sara the turtle was found at:"
. 70 = for k in keyList: #Lloop through the keys
Wlth the SUCCESSfUI T1 userLoc = locationDict[k] #G=t the lat/long tupl
T2 print " Lat: "+userLoc[0]+":; Lon: "+userLoc[l] #Print them teo the scr

message

[Anticipated errors can be dealt with somewhat explicitly J

30

Error Trapping in Python

http://docs.python.org/release/2.6.5/tutorial/errors.html#thandling-exceptions

8.3. Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks
the user for input until a valid integer has been entered, but allows the user to interrupt the program (using
contrel-C OF Whatever the operating system supports); note that a user-generated interruption is signalled

by raising the xeyboardInterrupt eXCeption.

== while True:

try:
¥ = int(raw_input ("Flease enter a number: ")}
break
except ValueError:
print "Oops! That was no valid number. Try again...”

The trv statement works as follows.

» First, the fry clause (the statement(s) between the tey and except Keywords) is executed.

» |[f no exception occurs, the except clause is skipped and execution of the - statement is finished.

= |[fan exceplion occurs during execution of the try clause, the rest of the clause is skipped. Then if its
type matches the exception named after the except keyword, the except clause is executed, and then
execution continues after the t«y statement.

» [T an exception occurs which does not match the exception named in the except clause, it is passed on
to outer t- statements; if no handler is found, it is an unhandled exception and execution stops with
a message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At
most one handler will be executed. Handlers only handle exceptions that occur in the corresponding try
clause, not in other handlers of the same trv statement. An except clause may name multiple exceptions as
a parenthesized tuple, for example:

31

http://docs.python.org/release/2.6.5/tutorial/errors.html

Task 6¢: Error Trapping (general)

Task6c.py — Catch any error before it's a problem

SE) -try:
Indent error prone teXt under d try.'/ﬂ] # Ask the nser to =snter a start record and and end record
clause. If any error occurs within - ° .
the section under the try: clause, G 1t 7/ not in mserDace: -
. . =) raise Exception(userDate + " iz not a walid date format™)
Python will skip to the except: 59

Create & list of 211 the dictionary kevs (UIDs) with a date ms

Clause. keyList = [] #Create an empty list to which we

for k in dateDict.kevs(): #Loop through al11 the kevys in the

v = dateDict[k] #5=t the values corrssponding to tF

{ 1 1 1 Faln = [0 #The current valus 15 & dats, time

Raise an error if the date supplied is” ¢ datevalue = v[0] The current valus is L

a5 = if dateValue == userDate: #Check whether the date matches tf

not in the ﬂght format. Error &6 keyList.append (k) #If it does, then add the key to

. . . &7
trapp|ng IS tr|ggered- &8 # Check that at lesast one record wvas returnsed
69 = if len(keyLi=st) == 0O: -l

/___'1:'———/'_> raise Exception("Ho observations made on " + userDate)

Raise an error if no records are 71 - else:

T2 # Now that we have & list of kevs, wve can loop through them,
retur‘ned 73 print "At " + userDate + ", Sara the turtle was found at:"
T4 = for k in kevList: #Loop LF
75 userlLoc = locationDict[k] F#o=t the
. T6 print " Lat: "+userLoc[0]+"; Lon: "+userLoc[l] #Print t
If no errors occur, the except: clause .
. . f=3 _ 3 "
IS Sk'pped. T8 except Exception as e:
78 print e

[Unanticipated errors are handled generally]

32

Writing scripts

Approach a scripting project by mapping out
the logical flow what you want to accomplish

Construct your script in incremental steps
Include comments throughout your script

Give useful names to your variables

Writing scripts gets easier with experience and
more knowledge of the scripting language

	Slide 1: Introduction to Scripting: Writing Python Scripts
	Slide 2: Learning Objectives
	Slide 3: The Zen of Python, by Tim Peters
	Slide 4: The Task
	Slide 5: The Task
	Slide 6: Exercise: Process ARGOS Data
	Slide 7: How ARGOS works…
	Slide 8: Exercise: Process ARGOS Data
	Slide 9: Step 1: Pseudocode
	Slide 10: Plan of attack: start simple
	Slide 11: What’s next?
	Slide 12
	Slide 13: Intro to Git/GitHub
	Slide 14: Parsing strings into variables
	Slide 15: Python file objects
	Slide 16: Python file objects
	Slide 17: Task 2: Read a line from ARGOS file
	Slide 18: While loops
	Slide 19: Task 3: Read all data from ARGOS file
	Slide 20: For loops
	Slide 21: Task 4: Read all data from ARGOS file
	Slide 22: Task 5a: Create a dictionary of observations
	Slide 23: If…else…statements
	Slide 24: Task 5b: Filter which records are used
	Slide 25: Model inputs: User Input
	Slide 26: Task 6a: Allow user to select site
	Slide 27: Task 6a: Allow user to select site
	Slide 28: Task 6a: Allow user to select site
	Slide 29: Model inputs: User Input
	Slide 30: Task 6b: Error Trapping (specific)
	Slide 31: Error Trapping in Python
	Slide 32: Task 6c: Error Trapping (general)
	Slide 33: Writing scripts
	Slide 34

